Processing math: 7%

28 thg 9, 2012


Lời giải
Sử dụng bất đẳng thức quen thuộc xy \le \dfrac{(x+y)^2}{4}, ta có: 4(5a+b).5(b^2+4ca) \le  \dfrac{(20a+4b+5b^2+20ca)^2}{4}. Như vậy, bài toán sẽ được chứng minh nếu ta chỉ ra được
\frac{1}{20}.\frac{{{(20a+4b+5{{b}^{2}}+20ca)}^{2}}}{4}\le 80, tức là 20a+4b+5b^2+20ca \le 80. Thật vậy, từ giả thiết ta có b \le 3, suy ra 5b^2 \le 5b.3=15b \le 16 b, do đó \begin{align}    20a+4b+5{{b}^{2}}+20ca & \le 20a+4b+16b+20ca \\  & \le 20\left( a+b \right)+20c\left( a+b \right) \\  & =20\left( 3-c \right)+20c\left( 3-c \right) \\  & =-20{{\left( c-1 \right)}^{2}}+80 \\  & \le 80. \\ \end{align} Bài toán được chứng minh xong ;).
Đẳng thức xảy ra khi và chỉ khi a=2, \ b=0, \ c=1 \ \blacksquare
Họ và tên Tăng Hải Tuân
Sinh viên Lớp CLC - Khóa 61 - Khoa Vật lí - Đại học Sư phạm Hà Nội
Quê quán Thái Dương - Thái Thụy - Thái Bình
Website http://vatliphothong.vn
Blog http://tanghaituan.blogspot.com
Facebook https://www.facebook.com/TangHaiTuan.Physics
Liên hệ 01696269624

0 nhận xét:

Đăng nhận xét