Cách 1: Dùng phương pháp tam thức bậc hai
Bất đẳng thức hoàn toàn thuần nhất, chuẩn hóa $a+b+c=3$ cho tiện. Bất đẳng thức cần chứng minh tương đương với $$(a^2b+b^2c+c^2a)(ab+bc+ca) \le 9.$$ Không mất tính tổng quát, giả sử $b$ là số nằm giữa hai số $a$ và $c$. Khi đó ta có $$\begin{align}
& c\left( b-a \right)\left( b-c \right)\le 0 \Leftrightarrow {{a}^{2}}b+{{b}^{2}}c+{{c}^{2}}a\le b\left( {{a}^{2}}+ac+{{c}^{2}} \right). \\
\end{align}$$ Đặt $x=ac$. Ta có $a+c=3-b$ và ta sẽ chứng minh
